
Download free eBooks at bookboon.com

Perl for Beginners

107

Built-in variables

19 Built-in variables

In chapter 16, we saw that the symbol @_ is a special “built-in variable”: whenever our program calls a
user-defined function, say the function despace() which we defined in that chapter, @_ stands for
the list of arguments it is called with. Our program might say:

$stringA = "a string of letters";
print(despace($stringA), "\n");

a_string_of_letters

– in this case, while the code headed sub despace is being interpreted by the machine, the symbol
@_ (which is used within that code) stands for the one-element array whose single element is
$stringA.

Perl has numerous built-in variables – a few others are also arrays, most are scalars. Let’s look at some of
the most useful of them.

Apart from @_, the most important built-in array variable is @ARGV, which does a job similar to @_ at
the level of the command line – the line addressed to your system prompt which tells it to run a Perl
program. Our very first program, (1), was a program to add two and two and print out their sum. For a first
program that was fine, but in real life it would obviously be more satisfying to have a program which
added and printed the sum of any pair of numbers we choose to give it. Here is a program to do that; let’s
name it printsum.pl:

(34)

1 $a = $ARGV[0];
2 $b = $ARGV[1];
3 print $a + $b, "\n";

If we have created a file printsum.pl containing (34), we can use it by placing the arguments (that is,
for this program, the numbers to be summed) after the program name (without commas):

perl -w printsum.pl 2.3 7.9

10.2

The array of arguments to printsum.pl is called @ARGV, so on this occasion $ARGV[0] is 2.3
and $ARGV[1] is 7.9.35

Better still, we can generalize the program by accepting any number of values to be summed – let’s call
the revised program printsumm.pl (“m” for “many”):

http://bookboon.com/

Download free eBooks at bookboon.com

Perl for Beginners

108

Built-in variables

(35)

1 $t = 0;
2 foreach $item (@ARGV)
3 {
4 $t += $item;
5 }
6 print "$t\n";

With printsumm.pl defined, we can write:

perl -w printsumm.pl 5 19 520 4

548

Turning to built-in scalar variables, in fact we have already seen some of these, in chapter 10 on pattern
matching. $1, $2, $3, and so on stand for elements identified by round brackets in the pattern section
of a pattern-match:

$word = "beautiful";
$word =~ /[^aeiou]([aeiou]+)[^aeiou]+([aeiou]+)[^aeiou]/;
finds the 1st 2 vowel-sequences surrounded by non-vowels
print $1, "\n", $2, "\n";

eau
i

Related to these are the built-in variables $&, $`, and $' which, following a pattern-matching
operation on a target string, stand for:

$& the section of the target string which matched the pattern
$` the preceding section of the target string
$' the following section of the target string

Thus:

$word = "beautiful";
$word =~ /eau(..)/;
print $1, "\n";
print $&, "\n";
print $`, "\n";
print $', "\n";

ti
eauti
b
ful

http://bookboon.com/

Download free eBooks at bookboon.com

Click on the ad to read more

Perl for Beginners

109

Built-in variables

The pattern between slashes covers the five characters eauti of $word (remember that . in a
pattern stands for any single character); so $& stands for that five-character substring. The brackets
round .. mean that $1 has the value ti; $` and $' stand for the portions of $word before and
after the segment eauti.

Other built-in scalar variables have nothing to do with pattern matching. For instance, $^T gives an
integer representing the time at which the current program began running (expressed in seconds since the
beginning of the year 1970). This huge value may not sound much use in its own right, but for instance we
can discover how long a system takes to execute some task by comparing $^T with the value returned
by time(), which is a built-in function giving a count of seconds-since-1970 at the moment when the
function call is reached in a program. How long does it take Perl to count to a hundred million? On my
machine, six seconds, as measured by the following program showtime.pl:

(36)

1 for ($i = 0; $i < 100000000; ++$i)
2 {;}
3 print $^T, "\n", time() - $^T, "\n";

perl -w showtime.pl

1277200878
6

www.sylvania.com

We do not reinvent
the wheel we reinvent
light.
Fascinating lighting offers an infinite spectrum of
possibilities: Innovative technologies and new
markets provide both opportunities and challenges.
An environment in which your expertise is in high
demand. Enjoy the supportive working atmosphere
within our global group and benefit from international
career paths. Implement sustainable ideas in close
cooperation with other specialists and contribute to
influencing our future. Come and join us in reinventing
light every day.

Light is OSRAM

http://bookboon.com/
http://bookboon.com/count/advert/ae925238-62e0-4fca-a4f2-a24b0097a136

Download free eBooks at bookboon.com

Perl for Beginners

110

Built-in variables

Many built-in scalar variables represent fairly arcane systems-programming concepts, which at this
introductory level we can afford to ignore. The most frequently-used built-in scalar variable of all, $_,
will be passed over briefly here for a different reason. We encountered $_ once, in chapter 12, in
connexion with the map() function (where it is indispensable). But the commonest use of $_ is to
provide idiomatically brief alternatives to Perl constructions that take slightly longer to spell out explicitly.
For seasoned programmers to whom brevity is important, this may be handy, but beginners are better
advised to make their code fully explicit, and hence they should probably avoid using $_. (Actually, even
professional programmers – not to speak of those who have to maintain their code after they have moved
on – are probably better off in the long run making everything explicit at the cost of a few extra keystrokes.
There is a geeky side to Perl which delights in terse obscurity for its own sake, and the symbol $_ is
arguably a symptom of that.)

After I have said that much, the reader will doubtless want me to say something specific about this use of
$_, so I will give one example. We know that foreach is used to access each element of an array in
turn:

(37)

1 @colours = ("blue","green","red","yellow");
2 foreach $colour (@colours)
3 {
4 $capColour = uc($colour);
5 print "$capColour\n";
6 }

BLUE
GREEN
RED
YELLOW

Alternatively, it is permissible to omit $colour after foreach, in which case $_ is understood:

foreach (@colours)
 {
 $capColour = uc($_);
 print "$capColour\n";
 }

gives the same output as (37). The symbol $_ here is like the word it in English: the first version of the
foreach loop was saying something like “for each colour word in the array, change that colour word to
upper case”, the second version abbreviated that to something more like “for whatever is in the array,
change it to upper case”. In English, our speech would quickly become tedious if we spelled everything
out rather than using the ambiguous word it. But then, in English we negotiate our meaning with one
another constantly as we converse, so that ambiguities are eliminated as fast as they arise. In
communicating with computers, real ambiguity and real misunderstandings are all too common and hard
to avoid. Consequently I would recommend that beginners leave $_ alone for a while.

http://bookboon.com/

